Received 16 March 2007

Accepted 4 April 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrew D. J. Barnes, M. Grazia Francesconi* and Timothy J. Prior

Department of Chemistry, University of Hull, Hull HU6 7RD, England

Correspondence e-mail: m.g.francesconi@hull.ac.uk

Key indicators

Single-crystal synchrotron study T = 150 KMean $\sigma(a-O) = 0.014 \text{ Å}$ R factor = 0.035 wR factor = 0.088 Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A synchrotron study of Ba₅Ta₂Cl₂O₉

The structure of pentabarium ditantalum dichloride nonaoxide, $Ba_5Ta_2Cl_2O_9$, is isotypic with $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$ and with one polymorph of $Ba_5Ru_2Cl_2O_9$. It is related to the perovskite structure and shows a ten-layer stacking of BaO_3 and BaCl blocks along the *c* axis. The Ta cations occupy octahedral interstices, forming Ta_2O_9 dimers of distorted faceshared TaO_6 octahedra. Except for one O atom, all atoms are situated on special positions: Ba1 (Wyckoff position $\overline{6m2}$), Ba2 and Ba3 (3*m*.), Ta (3*m*.), Cl (3*m*.) and O1 (*mm*2).

Comment

Compounds showing perovskite-related structures are of great interest as they show a range of properties, such as ionic conductivity, superconductivity, colossal magnetoresistance and catalytic properties (Cava, 2001; Ishihara *et al.*, 1994; Rao & Raveau, 1998). Mixed-anion compounds are not as common as oxides showing perovskite-related structures, but these

Figure 1

The structure of Ba₅Ta₂Cl₂O₉. The polyhedra represent the Ta₂O₉ dimers of face-shared TaO₆ octahedra. Grey and black spheres represent Cl⁻ and Ba²⁺, respectively. The ten-layer stacking sequence, $(BAAAB)_2$, with B = BaCl and A = BaO₃, is indicated.

© 2007 International Union of Crystallography All rights reserved offer a means of tuning physical properties by variation of the anion composition.

We have now prepared the chloride oxide $Ba_5Ta_2Cl_2O_9$, which is isotypic with $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$ (Hong & Sleight, 1997) and with one polymorph of $Ba_5Ru_2Cl_2O_9$ (Tancret *et al.*, 2004). $Ba_5Ta_2Cl_2O_9$ is also structurally related to Ba_5Ru - $TaCl_2O_9$ (Wilkens & Müller-Buschbaum, 1991), which was refined in the non-centrosymmetric space group $P6_322$ due to differences in the O2 atomic coordinates. Although the reaction mixture contained Ca_3N_2 , there was no evidence for the presence of Ca or N within the structure.

The structure of Ba₅Ta₂Cl₂O₉ is shown in Fig. 1 and can be described as a ten-layer stacking of BaO₃ and BaCl blocks along the *c* axis, in the sequence $(BAAAB)_2$, where $A = BaO_3$ and B = BaCl. The Ta cations occupy the octahedral sites created by the three BaO₃ layers, forming Ta₂O₉ dimers of distorted face-shared TaO₆ octahedra. Therefore, the structure can be described as an intergrowth of hexagonal perovskite blocks (Ba₃Ta₂O₉)²⁻ and of NaCl-type double layers (Ba₂Cl₂)²⁺.

The six symmetry-equivalent terminal Ta-O bonds are 1.873 (13) Å in length, while the remaining six Ta-O bond lengths in the dimer are considerably longer, at 2.139 (11) Å. Ba1 is twelve-coordinated by six O2 [2.949 (12) Å] and six O1 [2.996 (11) Å]. Ba2 is ten-coordinated by three O1 [2.734 (11) Å], six O2 [2.949 (12) Å] and one Cl [3.113 (6) Å]. Ba3 is seven-coordinated by three O2 [2.562 (11) Å], one Cl [3.159 (7) Å] and three additional Cl atoms [3.557 (2) Å].

Experimental

All operations had to be carried out under an inert atmosphere due to the extreme air- and moisture-sensitivity of the reagents. A mixture of polycrystalline BaCl₂, BaO and Ca₃N₂ (1:1:1 molar ratio) was placed in a crucible formed from tantalum metal foil and, subsequently, sealed inside a silica tube, with a valve head to allow the reaction to take place under flowing nitrogen. The mixture was heated for 36 h at 1273 K, then cooled to room temperature at 285 K h⁻¹. A large number of yellow and orange crystals were found to have grown on the Ta foil. None of the orange crystals proved suitable for X-ray diffraction. A yellow block-like crystal was analysed at station 16.2SMX of the UK Synchrotron Radiation Source, Daresbury Laboratory.

Crystal data

Ba ₅ Ta ₂ Cl ₂ O ₉	Z = 2
$M_r = 1263.50$	Synchrotron radiation
3	$\lambda = 0.7848 \text{ Å}$
a = 5.9787 (3) Å	$\mu = 27.18 \text{ mm}^{-1}$
c = 24.796 (3) Å	T = 150 (2) K
$V = 767.59(10) \text{ Å}^3$	$0.04 \times 0.02 \times 0.02 \ \text{mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.337, T_{max} = 0.665$	5409 measured reflections 351 independent reflections 317 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.093$

Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.035$	20 parameters
$wR(F^2) = 0.088$	$\Delta \rho_{\rm max} = 1.93 \text{ e } \text{\AA}^{-3}$
S = 1.12	$\Delta \rho_{\rm min} = -2.88 \text{ e} \text{ Å}^{-3}$
351 reflections	

When refined with anisotropic displacement parameters, the O atoms gave physically unreasonable values. Therefore, the O atoms were refined with isotropic displacement parameters in the final model. The highest peak in the final difference Fourier map is located 0.67 Å from atom O2 and the deepest hole is located 1.46 Å from atom Ba1.

Data collection: *APEXII* (Bruker, 2004); cell refinement: *APEXII*; data reduction: *APEXII*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *WinGX* (Farrugia, 1999); software used to prepare material for publication: *SHELXL97*.

The authors thank the CCLRC for access to Station 16.2SMX and the EPSRC for funding.

References

- Bruker (2004). *APEXII* and *SADABS*. Bruker AXS inc. Madison, Wisconsin, USA.
- Cava, R. J. (2001). J. Mater. Chem. 11, 54-62.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hong, S.-T. & Sleight, A. W. (1997). J. Solid State Chem. 132, 407-410.
- Ishihara, T., Matsuda, M. & Takita, Y. (1994). J. Am. Ceram. Soc. 77, 1682– 1684.
- Rao, C. N. R. & Raveau, B. (1998). Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides. Singapore: World Scientific.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tancret, N., Roussel, P. & Abraham, F. (2004). J. Solid State Chem. 177, 806–816.
- Wilkens, J. & Müller-Buschbaum, H. K. (1991). J. Less-Common Met. 171, 255–262.