Received 16 March 2007 Accepted 4 April 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrew D. J. Barnes, M. Grazia Francesconi* and Timothy J. Prior

Department of Chemistry, University of Hull, Hull HU6 7RD, England

Correspondence e-mail: m.g.francesconi@hull.ac.uk

Key indicators

Single-crystal synchrotron study $T = 150 K$ Mean σ (a–O) = 0.014 Å R factor = 0.035 wR factor = 0.088 Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A synchrotron study of $Ba₅Ta₂Cl₂O₉$

The structure of pentabarium ditantalum dichloride nonaoxide, $Ba₅Ta₂Cl₂O₉$, is isotypic with $Ba₅Ru_{1.6}W_{0.4}Cl₂O₉$ and with one polymorph of $Ba₅Ru₂Cl₂O₉$. It is related to the perovskite structure and shows a ten-layer stacking of $BaO₃$ and BaCl blocks along the c axis. The Ta cations occupy octahedral interstices, forming Ta_2O_9 dimers of distorted faceshared TaO $_6$ octahedra. Except for one O atom, all atoms are situated on special positions: Ba1 (Wyckoff position $\overline{6}m2$), Ba2 and Ba3 (3m.), Ta (3m.), Cl (3m.) and O1 ($mm2$).

Comment

Compounds showing perovskite-related structures are of great interest as they show a range of properties, such as ionic conductivity, superconductivity, colossal magnetoresistance and catalytic properties (Cava, 2001; Ishihara et al., 1994; Rao & Raveau, 1998). Mixed-anion compounds are not as common as oxides showing perovskite-related structures, but these

Figure 1

The structure of $Ba₅Ta₂Cl₂O₉$. The polyhedra represent the $Ta₂O₉$ dimers of face-shared TaO₆ octahedra. Grey and black spheres represent Cl^- and Ba^{2+} , respectively. The ten-layer stacking sequence, $(BAAAB)_2$, with $B =$ BaCl and $A = BaO₃$, is indicated.

 \odot 2007 International Union of Crystallography All rights reserved

offer a means of tuning physical properties by variation of the anion composition.

We have now prepared the chloride oxide $Ba₅Ta₂Cl₂O₉$, which is isotypic with $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$ (Hong & Sleight, 1997) and with one polymorph of $Ba_5Ru_2Cl_2O_9$ (Tancret *et al.*, 2004). Ba₅Ta₂Cl₂O₉ is also structurally related to Ba₅Ru-TaCl₂O₉ (Wilkens & Müller-Buschbaum, 1991), which was refined in the non-centrosymmetric space group $P6₃22$ due to differences in the O2 atomic coordinates. Although the reaction mixture contained $Ca₃N₂$, there was no evidence for the presence of Ca or N within the structure.

The structure of $Ba₅Ta₂Cl₂O₉$ is shown in Fig. 1 and can be described as a ten-layer stacking of $BaO₃$ and BaCl blocks along the c axis, in the sequence $(BAAA)_{2}$, where $A = BaO_{3}$ and $B =$ BaCl. The Ta cations occupy the octahedral sites created by the three $BaO₃$ layers, forming Ta₂O₉ dimers of distorted face-shared $TaO₆$ octahedra. Therefore, the structure can be described as an intergrowth of hexagonal perovskite blocks $(Ba_3Ta_2O_9)^{2-}$ and of NaCl-type double layers $(Ba_2Cl_2)^{2+}$.

The six symmetry-equivalent terminal Ta—O bonds are 1.873 (13) \AA in length, while the remaining six Ta $-$ O bond lengths in the dimer are considerably longer, at $2.139(11)$ \AA . Ba1 is twelve-coordinated by six O2 [2.949 (12) \AA] and six O1 $[2.996 (11)$ A. Ba2 is ten-coordinated by three O1 [2.734 (11) \AA], six O2 [2.949 (12) \AA] and one Cl [3.113 (6) \AA]. Ba3 is seven-coordinated by three O2 $[2.562 (11)$ Å], one Cl [3.159 (7) \AA] and three additional Cl atoms [3.557 (2) \AA].

Experimental

All operations had to be carried out under an inert atmosphere due to the extreme air- and moisture-sensitivity of the reagents. A mixture of polycrystalline BaCl₂, BaO and Ca₃N₂ (1:1:1 molar ratio) was placed in a crucible formed from tantalum metal foil and, subsequently, sealed inside a silica tube, with a valve head to allow the reaction to take place under flowing nitrogen. The mixture was heated for 36 h at 1273 K, then cooled to room temperature at 285 K h^{-1} . A large number of yellow and orange crystals were found to have grown on the Ta foil. None of the orange crystals proved suitable for X-ray diffraction. A yellow block-like crystal was analysed at station 16.2SMX of the UK Synchrotron Radiation Source, Daresbury Laboratory.

Crystal data

Data collection

When refined with anisotropic displacement parameters, the O atoms gave physically unreasonable values. Therefore, the O atoms were refined with isotropic displacement parameters in the final model. The highest peak in the final difference Fourier map is located 0.67 Å from atom O2 and the deepest hole is located 1.46 Å from atom Ba1.

Data collection: APEXII (Bruker, 2004); cell refinement: APEXII; data reduction: $APEXII$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

The authors thank the CCLRC for access to Station 16.2SMX and the EPSRC for funding.

References

- Bruker (2004). APEXII and SADABS. Bruker AXS inc. Madison, Wisconsin, USA.
- Cava, R. J. (2001). J. Mater. Chem. 11, 54–62.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Hong, S.-T. & Sleight, A. W. (1997). J. Solid State Chem. 132, 407–410.
- Ishihara, T., Matsuda, M. & Takita, Y. (1994). J. Am. Ceram. Soc. 77, 1682– 1684.
- Rao, C. N. R. & Raveau, B. (1998). Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides. Singapore: World Scientific.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tancret, N., Roussel, P. & Abraham, F. (2004). J. Solid State Chem. 177, 806– 816.
- Wilkens, J. & Müller-Buschbaum, H. K. (1991). J. Less-Common Met. 171, 255–262.